Repository logo
 
Publication

An automatic classifier of emotions built from entropy of noise

dc.contributor.authorFerreira, Jacqueline
dc.contributor.authorBrás, Susana
dc.contributor.authorSilva, Carlos Fernandes da
dc.contributor.authorSoares, Sandra Cristina de Oliveira
dc.date.accessioned2017-01-06T20:41:15Z
dc.date.available2017-01-06T20:41:15Z
dc.date.issued2016
dc.description.abstractThe electrocardiogram (ECG) signal has been widely used to study the physiological substrates of emotion. However, searching for better filtering techniques in order to obtain a signal with better quality and with the maximum relevant information remains an important issue for researchers in this field. Signal processing is largely performed for ECG analysis and interpretation, but this process can be susceptible to error in the delineation phase. In addition, it can lead to the loss of important information that is usually considered as noise and, consequently, discarded from the analysis. The goal of this study was to evaluate if the ECG noise allows for the classification of emotions, while using its entropy as an input in a decision tree classifier. We collected the ECG signal from 25 healthy participants while they were presented with videos eliciting negative (fear and disgust) and neutral emotions. The results indicated that the neutral condition showed a perfect identification (100%), whereas the classification of negative emotions indicated good identification performances (60% of sensitivity and 80% of specificity). These results suggest that the entropy of noise contains relevant information that can be useful to improve the analysis of the physiological correlates of emotion.pt_PT
dc.description.sponsorshipFundação para a Ciência e a Tecnologia (FCT)pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationPsychophysiology, 1-8. Doi: 10.1111/psyp.12808pt_PT
dc.identifier.doi10.1111/psyp.12808pt_PT
dc.identifier.issn0048-5772
dc.identifier.urihttp://hdl.handle.net/10400.12/5186
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherWileypt_PT
dc.relationCMUPERI/FIA/0031/2013pt_PT
dc.relationTHE SMELL OF DISEASE
dc.relationA novel approach to ECG biometrics
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectAutomatic classifierpt_PT
dc.subjectEntropy of noisept_PT
dc.subjectPhysiology of emotionspt_PT
dc.subjectElectrocardiogrampt_PT
dc.titleAn automatic classifier of emotions built from entropy of noisept_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleTHE SMELL OF DISEASE
oaire.awardTitleA novel approach to ECG biometrics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//SFRH%2FBD%2F85376%2F2012/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FCEC%2F00127%2F2013/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/9471 - RIDTI/PTDC%2FEEI-SII%2F6608%2F2014/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//SFRH%2FBPD%2F92342%2F2013/PT
oaire.citation.conferencePlaceUnited Kingdompt_PT
oaire.citation.endPage8pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titlePsychophysiologypt_PT
oaire.fundingStream5876
oaire.fundingStream9471 - RIDTI
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT
relation.isProjectOfPublication2803d77b-8588-4a4d-9282-16df71191ce3
relation.isProjectOfPublication02e750ec-9638-4f5b-9964-ff555be5ca81
relation.isProjectOfPublication687f90bf-779a-4f05-af5f-ec3fb3701bd9
relation.isProjectOfPublicationf410305d-66e4-4c5d-a1ab-2fa921eea5b5
relation.isProjectOfPublication.latestForDiscovery687f90bf-779a-4f05-af5f-ec3fb3701bd9

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
P, 0, 1-8.pdf
Size:
274.61 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed upon to submission
Description: