Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Metapopulations in temporary streams - The role of drought-flood cycles in promoting high genetic diversity in a critically endangered freshwater fish and its consequences for the future
Publication . Santos, Carla Sousa; Robalo, Joana Isabel; Francisco, Sara Martins; Carrapato, Carlos; Cardoso, Ana Cristina; Doadrio, Ignacio
Genetic factors have direct and indirect impacts in the viability of endangered species. Assessing their genetic diversity levels and population structure is thus fundamental for conservation and management. In this paper we use mitochondria] and nuclear markers to address phylogeographic and demographic data on the critically endangered Anaecypris hispanica, using a broad sampling set which covered its known distribution area in the Iberian Peninsula. Our results showed that the populations of A. hispanica are strongly differentiated (high and significant Phi(ST) and F-ST values, corroborated by the results from AMOVA and SAMOVA) and genetically diversified. We suggest that the restricted gene flow between populations may have been potentiated by ecological, hydrological and anthropogenic causes. Bayesian skyline plots revealed a signal for expansion for all populations (t(MRCA) between 68 kya and 1.33 Mya) and a genetic diversity latitudinal gradient was detected between the populations from the Upper (more diversified) and the Lower (less diversified) Guadiana river basin. We postulate a Pleistocenic westwards colonization route for A. hispanica in the Guadiana river basin, which is in agreement with the tempo and mode of paleoevolution of this drainage. The colonization of River Guadalquivir around 60 kya with migrants from the Upper Guadiana, most likely by stream capture, is also suggested. This study highlights the view that critically endangered species facing range retreats (about 47% of its known populations have disappeared in the last 15 years) are not necessarily small and genetically depleted. However, the extinction risk is not negligible since A. hispanica faces the combined effect of several deterministic and stochastic negative factors and, moreover, recolonization events after localized extinctions are very unlikely to occur due to the strong isolation of populations and to the patchily ecologically-conditioned distribution of fish. The inferred species distribution models highlight the significant contribution of temperature seasonality and isothermality to A. hispanica occurrence in Guadiana environments and emphasize the importance of stable climatic conditions for the preservation of this species. Given the strong population structure, high percentage of private haplotypes and virtual absence of inter-basin gene flow we suggest that each A. hispanica population should be considered as an independent Operational Conservation Unit and that ex-situ and in-situ actions should be conducted in parallel to allow for the long-term survival of the species and the preservation of the genetic integrity of its populations. (C) 2014 Elsevier Inc. All rights reserved.
Broad-scale sampling of primary freshwater fish populations reveals the role of intrinsic traits, inter-basin connectivity, drainage area and latitude on shaping contemporary patterns of genetic diversity
Publication . Santos, Carla Sousa; Robalo, Joana Isabel; Pereira, Ana Martins; Branco, Paulo; Santos, José Maria; Ferreira, Maria Teresa; Sousa, Mónica; Doadrio, Ignacio
Background. Worldwide predictions suggest that up to 75% of the freshwater fish species occurring in rivers with reduced discharge could be extinct by 2070 due to the combined effect of climate change and water abstraction. The Mediterranean region is considered to be a hotspot of freshwater fish diversity but also one of the regions where the effects of climate change will be more severe. Iberian cyprinids are currently highly endangered, with over 68% of the species raising some level of conservation concern. Methods. During the FISHATLAS project, the Portuguese hydrographical network was extensively covered (all the 34 river basins and 47 sub-basins) in order to contribute with valuable data on the genetic diversity distribution patterns of native cyprinid species. A total of 188 populations belonging to 16 cyprinid species of Squalius, Luciobarbus, Achondrostoma, Iberochondrostoma, Anaecypris and Pseudochondrostoma were characterized, for a total of 3,678 cytochrome b gene sequences. Results. When the genetic diversity of these populations was mapped, it highlighted differences among populations from the same species and between species with identical distribution areas. Factors shaping the contemporary patterns of genetic diversity were explored and the results revealed the role of latitude, inter-basin connectivity, migratory behaviour, species maximum size, species range and other species intrinsic traits in determining the genetic diversity of sampled populations. Contrastingly, drainage area and hydrological regime (permanent vs. temporary) seem to have no significant effect on genetic diversity. Species intrinsic traits, maximum size attained, inter-basin connectivity and latitude explained over 30% of the haplotype diversity variance and, generally, the levels of diversity were significantly higher for smaller sized species, from connected and southerly river basins. Discussion. Targeting multiple co-distributed species of primary freshwater fish allowed us to assess the relative role of historical versus contemporary factors affecting genetic diversity. Since different patterns were detected for species with identical distribution areas we postulate that contemporary determinants of genetic diversity (species' intrinsic traits and landscape features) must have played a more significant role than historical factors. Implications for conservation in a context of climate change and highly disturbed habitats are detailed, namely the need to focus management and conservation actions on intraspecific genetic data and to frequently conduct combined genetic and demographic surveys.
Threatened fishes of the world: Cottus hispaniolensis bacescu-mester, 1964 (cottidae)
Publication . Santos, Carla Sousa; Robalo, Joana Isabel; Pereira, Ana Martins; Doadrio, Ignacio
Cottus hispaniolensis is a critically endangered cottid fish which is endemic from the Pyrenanean Garonne river basin.
Mito-nuclear sequencing is paramount to correctly identify sympatric hybridizing fishes
Publication . Santos, Carla Sousa; Pereira, Ana Martins; Branco, Paulo; Costa, Gonçalo J.; Santos, José M.; Ferreira, Maria Teresa; Lima, Cristina M.; Doadrio, Ignacio; Robalo, Joana Isabel
Background. Hybridization may drive speciation and erode species, especially when intrageneric sympatric species are involved. Five sympatric Luciobarbus species—Luciobarbus sclateri (Günther, 1868), Luciobarbus comizo (Steindachner, 1864), Luciobarbus microcephalus (Almaça, 1967), Luciobarbus guiraonis (Steindachner, 1866), and Luciobarbus steindachneri (Almaça, 1967)—are commonly identified in field surveys by diagnostic morphological characters. Assuming that i) in loco identification is subjective and observer-dependent, ii) there is previous evidence of interspecific hybridization, and iii) the technical reports usually do not include molecular analyses, our main goal was to assess the concordance between in loco species identification based on phenotypic characters with identifications based on morphometric indices, mtDNA only, and a combination of mito-nuclear markers. Materials and methods. Specimens of Luciobarbus from six Guadiana River sub-basins were collected and sequenced for the cytochrome b and beta-actin genes. For comparative purposes, samples of Luciobarbus from other 12 river basins were also used. Four levels of taxonomical identification were conducted based on: identification made in the field (in loco identification), cytb gene only, beta-actin gene only, and mito-nuclear combined genomes. Results. Results showed that interspecific hybridization seems to be high (around 41%) and likely favoured by non-random mating and the loss of fluvial connectivity. About 34% of the hybrids showed mito-nuclear discordance. Misidentifications were frequent when only phenotypic characters are considered, and the use of a single mitochondrial gene is not sufficient: the use of two mito-nuclear markers showed that around 82% of the in loco identifications based on the phenotype were not correct. Conclusion. Incorrect species assignment likely generated biased results in previous studies on the biology and ecology of Guadiana barbels and in the assignment of conservation status and, consequently, on the establishment of conservation management measures.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

3599-PPCDT

Funding Award Number

PTDC/AAC-CLI/103110/2008

ID