Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Prey-switching to fishery discards does not compensate for poor natural foraging conditions in breeding albatrossPublication . Kuepfer, Amanda; Votier, Stephen C; Sherley, Richard; Ventura, Francesco; Matias, Rafael; Anderson, Orea; Brickle, Paul; Arkhipkin, Alexander; Catry, PauloFishery discards supplement food for many seabirds, but the impacts of declining discards are poorly understood. Discards may be beneficial for some populations but have negative impacts by increasing bycatch risk or because they are junk-food. The Falkland Islands support > 70% of global black-browed albatross Thalassarche melanophris populations, which feed on discards. However, the effect of discards on population demographics, and implications of fishery management changes, are unknown. We analysed stomach contents of black-browed albatross chicks across eight breeding seasons (2004-2020) from New Island, Falkland Islands, to assess variation in discard consumption and how this relates to foraging conditions and breeding success. Across years, 68%-98% of samples contained natural prey, whilst 23%-88% of samples contained fishery discards. Discard consumption was positively related to fishery catches of hoki Macruronus magellanicus and sea surface temperature anomalies SSTA (degrees C), and negatively related to breeding success. These results suggest a diet-switching behaviour for Falkland Islands albatrosses, whereby birds switch from preferred natural prey to suboptimal discards when environmental conditions, and hence natural feeding opportunities, are unfavourable. Crucially, this study highlights that fishery discards do not compensate for poor natural foraging conditions for breeding albatrosses in the long term.
- Inter-colony and inter-annual variation in discard use by albatross chicks revealed using isotopes and regurgitatesPublication . Kuepfer, Amanda; Catry, Paulo; Bearhop, Stuart; Sherley, Richard; Bell, Olivia; Newton, Jason; Brickle, Paul; Arkhipkin, Alexander; Votier, StephenEffective marine ecosystem monitoring is critical for sustainable management. Monitoring seabird diets can convey important information on ecosystem health and seabird–fishery interactions. The diet of breeding black-browed albatross (Thalassarche melanophris) has previously been assessed using stomach content analysis (SCA) or stable isotope analysis (SIA), but not both methods together. Combining dietary sampling approaches reduces biases associated with using single methods. This study combines SCA and SIA to study the diet of black-browed albatross chicks, with a specific focus on fishery discard consumption, at two Falkland Islands colonies (New Island 51°43′S, 61°18′W and Steeple Jason Island 51°01′S, 61°13′W) during two consecutive breeding seasons (2019 and 2020). SCA provided high taxonomic resolution of short-term diet and priors for stable isotope mixing models, with multiple measures of dietary items (e.g. numeric frequency N%, frequency of occurrence FO%). By contrast, SIA of down feathers provided a single and more integrated dietary signal from throughout chick development. Although the two methods disagreed on the dominant prey group (SCA—crustacean; SIA—pelagic fish), the complementary information suggested a chick diet dominated by natural prey (SCA: 74%–93% [FO], 44%–98% [N]; SIA: minimum 87%–95% contribution). Nonetheless, SCA revealed that a high proportion of breeding adults do take discards. We detected consistent colony-specific diets in relation to prey species, but not in relation to higher discard use. Overall, discard consumption was highest in 2020, the year characterised by the poorest foraging conditions. Our results have implications for fisheries management and future dietary studies assessing discard use.
- Overlap between marine predators and proposed Marine Managed Areas on the Patagonian ShelfPublication . Baylis, Alastair; Lecea, Ander M. De; Tierney, Megan; Orben, Rachael; Ratcliffe, Norman; Wakefield, Ewan; Catry, Paulo; Campioni, Letizia; Costa, Marina; Boersma, P. Dee; Galimberti, Filippo; Granadeiro, José P.; Masello, Juan; Puetz, Klemens; Quillfeldt, Petra; Rebstock, Ria; Sanvito, Simona; Staniland, Iain; Brickle, PaulAbstract. Static (fixed-boundary) protected areas are key ocean conservation strategies, and marine higher predator distribution data can play a leading role toward identifying areas for conservation action. The Falkland Islands are a globally significant site for colonial breeding marine higher predators (i.e., seabirds and pinnipeds). However, overlap between marine predators and Falkland Islands proposed Marine Managed Areas (MMAs) has not been quantified. Hence, to provide information required to make informed decisions regarding the implementation of proposed MMAs, our aims were to objectively assess how the proposed MMA network overlaps with contemporary estimates of marine predator distribution. We collated tracking data (1999–2019) and used a combination of kernel density estimation and model-based predictions of spatial usage to quantify overlap between colonial breeding marine predators and proposed Falkland Islands MMAs. We also identified potential IUCN Key Biodiversity Areas (pKBAs) using (1) kernel density based methods originally designed to identify Important Bird and Biodiversity Areas (IBAs) and (2) habitat preference models. The proposed inshore MMA, which extends three nautical miles from the Falkland Islands, overlapped extensively with areas used by colonial breeding marine predators. This reflects breeding colonies being distributed throughout the Falklands archipelago, and use being high adjacent to colonies due to central-place foraging constraints. Up to 45% of pKBAs identified via kernel density estimation were located within the proposed MMAs. In particular, the proposed Jason Islands Group MMA overlapped with pKBAs for three marine predator species, suggesting it is a KBA hot spot. However, tracking data coverage was incomplete, which biased pKBAs identified using kernel density methods, to colonies tracked. Moreover, delineation of pKBA boundaries were sensitive to the choice of smoothing parameter used in kernel density estimation. Delineation based on habitat model predictions for both sampled and unsampled colonies provided less biased estimates, and revealed 72% of the Falkland Islands Conservation Zone was likely a KBA. However, it may not be practical to consider such a large area for fixed-boundary management. In the context of wide-ranging marine predators, emerging approaches such as dynamic ocean management could complement static management frameworks such as MMAs, and provide protection at relevant spatiotemporal scales.