Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Seasonal approach to forecast the suitability of spawning habitats of a temperate small pelagic fish under a high-emission climate change scenarioPublication . Lima, André R.A.; Garrido, Susana; Riveiro, I.; Rodrigues, Diana; Angélico, Maria M. P.; Gonçalves, Emanuel J.; Peck, Myron A.; Silva, GonçaloABSTRACT: Spawning habitats of cold-water, European small pelagic fishes have shifted poleward in the last three decades coincident with gradual ocean warming. We predicted present-day, season-specific habitat suitability for spawning by European sardine Sardina pichardus in the Atlantic Ocean and Mediterranean and Black Seas, and projected climate-driven changes in suitable areas from 2050-2099 under the IPCC – RCP 8.5 scenario. Sea surface temperature and distance to the coast had the greater influences in spawning habitats, reflecting the temperature- and coastal-dependent spawning of sardines. Chlorophyll-a was the third most important explanatory variable for spawning in winter to summer. Winds were predominantly important during autumn, whilst sea surface salinity was an important driver during spring and summer. Presentday, “hotspots” for spawning were identified in regions of highly productive, salty waters, where SST was between 6 and 18°C from autumn to spring or 16 and 25°C during summer and favourable winds occurred that would retain eggs and larvae closer to the coast (< 250 km). For future scenarios, forecasts indicate that environmental optima for spawning is projected to be in regions where SST varies between 11°C and 18°C from autumn to spring; and between 18°C and 24°C during summer. However, a negative relationship between phytoplankton productivity and habitat suitability induced by warming is likely to occur in the future. Projections suggest that suitable spawning habitats in all seasons will shift to higher latitudes, with a prominent range expansion along the coast of Norway during winter and autumn (> 83%). The total spawning area, however, was projected to contract in the future during spring (-10.5%) and autumn (-4.1%) due to losses of currently suitable areas along the Atlantic African Coast and Mediterranean Sea. Such regions currently support the greatest sardine stocks but climate-driven warming and decreased plankton productivity are projected to make these areas unsuitable for spawning and likely also for sardine fisheries in future.
- Forecasting shifts in habitat suitability across the distribution range of a temperate small pelagic fish under different scenarios of climate changePublication . Lima, André R.A.; Baltazar-Soares, Miguel; Garrido, Susana; Riveiro, I. (Isabel); Carrera, Pablo; Piecho-Santos, A. Miguel; Peck, Myron; Silva, GonçaloClimate change often leads to shifts in the distribution of small pelagic fish, likely by changing the matchmismatch dynamics between these sensitive species within their environmental optima. Using present-day habitat suitability, we projected how different scenarios of climate change (IPCC Representative Concentration Pathways 2.6, 4.5 and 8.5) may alter the large scale distribution of European sardine Sardina pilchardus (a model species) by 2050 and 2100. We evaluated the variability of species-specific environmental optima allowing a comparison between present-day and future scenarios. Regardless of the scenario, sea surface temperature and salinity and the interaction between current velocity and distance to the nearest coast were the main descriptors responsible for the main effects on sardine's distribution. Present-day and future potential “hotspots” for sardine were neritic zones (<250 km) withwater currents <0.4ms−1, where SST was between 10 and 22 °C and SSS>20 (PSU), on average.Most variability in projected shifts among climatic scenarioswas in habitats with moderate to low suitability. By the end of this century, habitat suitability was projected to increase in the Canary Islands, Iberian Peninsula, central North Sea, northern Mediterranean, and eastern Black Sea and to decrease in the Atlantic African coast, southwest Mediterranean, English Channel, northern North Sea and Western U.K. A gradual poleward-eastward shift in sardine distribution was also projected among scenarios. This shift was most pronounced in 2100 under RCP 8.5. In that scenario, sardines had a 9.6% range expansion which included waters along the entire coast of Norway up and into the White Sea. As habitat suitability is mediated by the synergic effects of climate variability and change on species fitness, it is critical to apply models with robust underlying species-habitat data that integrate knowledge on the full range of processes shaping species productivity and distribution.