Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Complete mitochondrial genome of the branching octocoral Paramuricea grayi (Johnson, 1861), phylogenetic relationships and divergence analysisPublication . Coelho, Márcio A. G.; Ledoux, Jean-Baptiste; Boavida, Joana; Paulo, Diogo; Gómez-Gras, Daniel; Bensoussan, Nathaniel; López-Sendino, Paula; Cerrano, Carlo; Kipson, Silvija; Bakran-Petricioli, Tatjana; Garrabou, Joaquim; EA, Serrao; Pearson, Gareth AnthonyThe Gray’s sea fan, Paramuricea grayi (Johnson, 1861), typically inhabits deep littoral and circalittoral habitats of the eastern temperate and tropical Atlantic Ocean. Along the Iberian Peninsula, where P. grayi is a dominant constituent of circalittoral coral gardens, two segregating lineages (yellow and purple morphotypes) were recently identified using single-copy nuclear orthologues. The mitochondrial genomes of 9 P. grayi individuals covering both color morphotypes were assembled from RNA-seq data, using samples collected at three sites in southern (Sagres and Tavira) and western (Cape Espichel) Portugal. The complete circular mitogenome is 18,668 bp in length, has an A þ T-rich base composition (62.5%) and contains the 17 genes typically found in Octocorallia: 14 protein-coding genes (atp6, atp8, cob, cox1-3, mt-mutS, nad1-6, and nad4L), the small and large subunit rRNAs (rns and rnl), and one transfer RNA (trnM). The mitogenomes were nearly identical for all specimens, though we identified a noteworthy polymorphism (two SNPs 9 bp apart) in the mt-mutS of one purple individual that is shared with the sister species P. clavata. The mitogenomes of the two species have a pairwise sequence identity of 99.0%, with nad6 and mt-mutS having the highest rates of non-synonymous substitutions.
- Not out of the Mediterranean: Atlantic populations of the gorgonian Paramuricea clavata are a separate sister species under further lineage diversificationPublication . A. G. Coelho, Márcio; Pearson, Gareth Anthony; Boavida, Joana; Paulo, Diogo; Aurelle, Didier; ARNAUD-HAOND, Sophie; Gómez-Gras, Daniel; Bensoussan, Nathaniel; López-Sendino, Paula; Cerrano, Carlo; Kipson, Silvija; Bakran-Petricioli, Tatjana; Ferretti, Eliana; Linares, Cristina; Garrabou, Joaquim; Serrão, Ester A.; Ledoux, Jean-BaptisteThe accurate delimitation of species boundaries in nonbilaterian marine taxa is notoriously difficult, with consequences for many studies in ecology and evolution. Anthozoans are a diverse group of key structural organisms worldwide, but the lack of reliable morphological characters and informative genetic markers hampers our ability to understand species diversification. We investigated population differentiation and species limits in Atlantic (Iberian Peninsula) and Mediterranean lineages of the octocoral genus Paramuricea previously identified as P. clavata. We used a diverse set of molecular markers (microsatellites, RNA-seq derived single-copy orthologues [SCO] and mt-mutS [mitochondrial barcode]) at 49 locations. Clear segregation of Atlantic and Mediterranean lineages was found with all markers. Species-tree estimations based on SCO strongly supported these two clades as distinct, recently diverged sister species with incomplete lineage sorting, P. cf. grayi and P. clavata, respectively. Furthermore, a second putative (or ongoing) speciation event was detected in the Atlantic between two P. cf. grayi color morphotypes (yellow and purple) using SCO and supported by microsatellites. While segregating P. cf. grayi lineages showed considerable geographic structure, dominating circalittoral communities in southern (yellow) and western (purple) Portugal, their occurrence in sympatry at some localities suggests a degree of reproductive isolation. Overall, our results show that previous molecular and morphological studies have underestimated species diversity in Paramuricea occurring in the Iberian Peninsula, which has important implications for conservation planning. Finally, our findings validate the usefulness of phylotranscriptomics for resolving evolutionary relationships in octocorals