Repository logo
 
Loading...
Profile Picture
Person

Baltazar-Soares, Miguel

Search Results

Now showing 1 - 2 of 2
  • Targeted sequencing of mitochondrial genes reveals signatures of molecular adaptation in a nearly panmictic small pelagic fish species
    Publication . Baltazar-Soares, Miguel; Lima, André R.A.; Silva, Gonçalo
    Ongoing climatic changes, with predictable impacts on marine environmental conditions, are expected to trigger organismal responses. Recent evidence shows that, in some marine species, variation in mitochondrial genes involved in the aerobic conversion of oxygen into ATP at the cellular level correlate with gradients of sea surface temperature and gradients of dissolved oxygen. Here, we investigated the adaptive potential of the European sardine Sardina pilchardus populations offshore the Iberian Peninsula. We performed a seascape genetics approach that consisted of the high throughput sequencing of mitochondria's ATP6, COI, CYTB and ND5 and five microsatellite loci on 96 individuals coupled with environmental information on sea surface temperature and dissolved oxygen across five sampling locations. Results show that, despite sardines forming a nearly panmictic population around Iberian Peninsula, haplotype frequency distribution can be explained by gradients of minimum sea surface temperature and dissolved oxygen. We further identified that the frequencies of the most common CYTB and ATP6 haplotypes negatively correlate with minimum sea surface temperature across the sampled area, suggestive of a signature of selection. With signatures of selection superimposed on highly connected populations, sardines may be able to follow environmental optima and shift their distribution northwards as a response to the increasing sea surface temperatures.
  • A noninvasive eDNA tool for detecting sea lamprey larvae in river sediments: analytical validation and field testing in a low‐abundance ecosystem
    Publication . Baltazar-Soares, Miguel; Pinder, Adrian C.; Harrison, Andrew J.; Oliver, Will; Picken, Jessica; Britton, J. Robert; Andreou, Demetra
    Anthropogenic activities are increasingly threatening aquatic biodiversity, especially anadromous species. Monitoring and conservation measures are thus required to protect, maintain and restore imperilled populations. While many species can be surveyed using traditional capture and visual census techniques, species that use riverine habitats in a less conspicuous manner, such as sea lamprey Petromyzon marinus, can be more challenging to monitor. Sea lamprey larvae (ammocoetes) can spend several years in freshwater burrowed within soft sediments, inhibiting their detection and assessment. Here, we present a qPCR assay based on the detection of environmental DNA (eDNA) to identify the presence of ammocoetes burrowed in the sediment. We present an extensively validated method that ensured both speciesspecificity of the assay as well as the capacity to detect ammocoetes when abundances are low. Experiments on burrowing activity suggested that most of the DNA released into the sediment occurs during burrowing. Overall, we demonstrate this new molecular-based tool is an efficient and effective complement to traditional monitoring activities targeting larval stages of sea lampreys.