Biologia do Comportamento
Permanent URI for this community
Browse
Browsing Biologia do Comportamento by Subject "11-ketotestosterone"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Androgen response to social competition in a shoaling fishPublication . Teles, Magda; Oliveira, Rui FilipeAndrogens respond to social challenges and this response has been interpreted as a way for males to adjust androgen-dependent behavior to social context. However, the androgen responsiveness to social challenges varies across species and a conceptual framework has been developed to explain this variation according to differences in the mating system and parental care type, which determines the regimen of challenges males are exposed to, and concomitantly the scope (defined as the difference between the physiological maximum and the baseline levels) of response to a social challenge. However, this framework has been focused on territorial species and no clear predictions have been made to gregarious species (e.g. shoaling fish), which although tolerating same-sex individuals may also exhibit intra-sexual competition. In this paper we extend the scope of this conceptual framework to shoaling fish by studying the endocrine response of zebrafish (Danio rerio) to social challenges. Male zebrafish exposed to real opponent agonistic interactions exhibited an increase in androgen levels (11-ketotestosterone both in Winners and Losers and testosterone in Losers). This response was absent in Mirror-fighters, that expressed similar levels of aggressive behavior to those of winners, suggesting that this response is not a mere reflex of heightened aggressive motivation. Cortisol levels were also measured and indicated an activation of the hypothalamic-pituitary-interrenal axis in Winners of real opponent fighters, but not Losers or in Mirror-fighters. These results confirm that gregarious species also exhibit an endocrine response to an acute social challenge.
- Social cues in the expression of sequential alternative reproductive tactics in young males of the peacock blenny, Salaria pavoPublication . Fagundes, Teresa; Simões, Mariana G.; Gonçalves, David; Oliveira, Rui FilipePhenotypic change in response to variation in environmental cues has been widely documented in fish. Transitions in social dominance, in particular, have been shown to induce a rapid switch in reproductive phenotypes in many species. However, this effect has been mainly studied in adults and focused on behavioural transitions. The way social cues constraint the phenotypic development of juveniles remains poorly studied in fish. We tested the importance of social dominance and density in the phenotypic development of juveniles of the peacock blenny Salaria pavo. This species shows sequential male alternative reproductive tactics. In the first breeding season males can reproduce as nest-holders or as parasitic males (female-mimicking), or postpone reproduction; from the following season afterwards all males reproduce as nest-holders. Parasitic males have relatively larger testes that lack a testicular gland, present in the testes of nest-holders. The testicular gland is the main source of androgens in the testes and accordingly nest-holders have higher circulating androgen levels. In addition, exogenous androgen administration to parasitic males promotes the development of secondary sexual characters (SSC) only present in nest-holders such as a head crest and an anal gland. We raised juveniles under a high or low-density treatment and monitored social interactions for 1 month. No significant effect of density on the development of juvenile males was detected. However, within each replicate, the relative body size of juvenile males at the beginning of the experiment determined their dominance status, with dominant males developing towards the nest-holder morphotype. Dominant males engaged in more nest defence behaviour, showed larger testicular glands, had higher levels of 11-ketotestosterone (11-KT) and testosterone (T) and developed more SSC, as compared to subordinate males. However, these effects of social dominance were moderated by body condition as only dominant males in good body condition developed SSC. The effect of social dominance and of the area of the testicular gland on the development of SSC was mediated by 11-KT and on the expression of nest defence behaviour by T. Interestingly, in spite of the higher androgen levels and more pronounced morphologic development of SSC in dominant individuals, gonadal development was independent of social dominance and most fish still had underdeveloped testis at the end of the experiment. In conclusion, social dominance promoted the development of the testicular gland, an increase in circulating androgen levels and the development of SSC, but did not promote testicular development. This suggests a dissociation of mechanisms underlying sexual maturation and the expression of male reproductive traits. This dissociation seems to be the key for the occurrence of female-mimicking males in this species, which are sexually mature despite lacking the SSC typical of nest-holders.