Browsing by Author "Ryan, Peter G."
Now showing 1 - 10 of 12
Results Per Page
Sort Options
- Comment on “Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds” by Savoca et al.Publication . Dell’Ariccia, Gaia; Phillips, Richard A.; Franeker, Jan A. van; Gaidet, Nicolas; Catry, Paulo; Granadeiro, José Pedro; Ryan, Peter G.; Bonadonna, FrancescoIn their recent paper, Savoca and collaborators (2016) showed that plastic debris in the ocean may acquire a dimethyl sulfide (DMS) signature from biofouling developing on their surface. According to them, DMS emission may represent an olfactory trap for foraging seabirds, which explains patterns of plastic ingestion among procellariiform seabirds. This hypothesis is appealing, but some of the data that Savoca et al. used to support their claim are questionable, resulting in a misclassification of species, as well as other decisions regarding the variables to include in their models. Furthermore, with their focus on a single lifestyle trait (nesting habit) of dubious relevance for explaining plastic ingestion, Savoca et al. neglect the opportunity to explore other factors that might provide better ecological insight. Finally, we are deeply concerned by the conservation policy recommendation proposed by Savoca et al.—to increase antifouling properties of consumer plastics—which constitutes a substantial environmental risk and delivers the wrong message to decision-makers. The reduction of plastic consumption, waste prevention, and proactive reuse through a circular economy should be at the heart of policy recommendations for future mitigation efforts.
- Comment on “Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds” by Savocaet alPublication . Dell'Ariccia, Gaia; Phillips, Richard; Franeker, Jan A. Van; Gaidet, Nicolas; Catry, Paulo; Granadeiro, José Pedro; Ryan, Peter G.; Bonadonna, FrancescoIn their recent paper, Savoca and collaborators (2016) showed that plastic debris in the ocean may acquire a dimethyl sulfide (DMS) signature from biofouling developing on their surface. According to them, DMS emission may represent an olfactory trap for foraging seabirds, which explains patterns of plastic ingestion among procellariiform seabirds. This hypothesis is appealing, but some of the data that Savoca et al. used to support their claim are questionable, resulting in a misclassification of species, as well as other decisions regarding the variables to include in their models. Furthermore, with their focus on a single lifestyle trait (nesting habit) of dubious relevance for explaining plastic ingestion, Savoca et al. neglect the opportunity to explore other factors that might provide better ecological insight. Finally, we are deeply concerned by the conservation policy recommendation proposed by Savoca et al.-to increase antifouling properties of consumer plastics-which constitutes a substantial environmental risk and delivers the wrong message to decision-makers. The reduction of plastic consumption, waste prevention, and proactive reuse through a circular economy should be at the heart of policy recommendations for future mitigation efforts.
- A framework for mapping the distribution of seabirds by integrating tracking, demography and phenologyPublication . Carneiro, Ana Paula B.; Pearmain, Elizabeth J.; Oppel, Steffen; Clay, Thomas A.; Phillips, Richard A.; Bonnet‐Lebrun, Anne‐Sophie; Wanless, Ross M.; Abraham, Edward; Richard, Yvan; Rice, Joel; Handley, Jonathan; Davies, Tammy E.; Dilley, Ben J.; Ryan, Peter G.; Small, Cleo; Arata, Javier; Arnould, John P. Y.; Bell, Elizabeth; Bugoni, Leandro; Letizia, Campioni; Catry, Paulo; Cleeland, Jaimie; Deppe, Lorna; Elliott, Graeme; Freeman, Amanda; Gonzalez-Solis, Jacob; Granadeiro, José Pedro; Grémillet, David; Landers, Todd J.; Makhado, Azwianewi; Nel, Deon; Nicholls, David G.; Rexer‐Huber, Kalinka; Robertson, Christopher J. R.; Sagar, Paul M.; Scofield, Paul; Stahl, Jean‐Claude; Stanworth, Andrew; Stevens, Kim L.; Trathan, Philip N.; Thompson, David R.; Torres, Leigh; Walker, Kath; Waugh, Susan M.; Weimerskirch, Henri; Dias, Maria P.1. The identification of geographic areas where the densities of animals are highest across their annual cycles is a crucial step in conservation planning. In marine environments, however, it can be particularly difficult to map the distribution of species, and the methods used are usually biased towards adults, neglecting the distribution of other life-history stages even though they can represent a substantial proportion of the total population. 2. Here we develop a methodological framework for estimating populationlevel density distributions of seabirds, integrating tracking data across the main life-history stages (adult breeders and non-breeders, juveniles and immatures). We incorporate demographic information (adult and juvenile/immature survival, breeding frequency and success, age at first breeding) and phenological data (average timing of breeding and migration) to weight distribution maps according to the proportion of the population represented by each life-history stage. 3. We demonstrate the utility of this framework by applying it to 22 species of albatrosses and petrels that are of conservation concern due to interactions with fisheries. Because juveniles, immatures and non-breeding adults account for 47%–81% of all individuals of the populations analysed, ignoring the distributions of birds in these stages leads to biased estimates of overlap with threats, and may misdirect management and conservation efforts. Population-level distribution maps using only adult distributions underestimated exposure to longline fishing effort by 18%–42%, compared with overlap scores based on data from all lifehistory stages. 4. Synthesis and applications. Our framework synthesizes and improves on previous approaches to estimate seabird densities at sea, is applicable for data-poor situations, and provides a standard and repeatable method that can be easily updated as new tracking and demographic data become available. We provide scripts in the R language and a Shiny app to facilitate future applications of our approach. We recommend that where sufficient tracking data are available, this framework be used to assess overlap of seabirds with at-sea threats such as overharvesting, fisheries bycatch, shipping, offshore industry and pollutants. Based on such an analysis, conservation interventions could be directed towards areas where they have the greatest impact on populations.
- Genetic population structure of black-browed and Campbell albatrosses, and implications for assigning provenance of birds killed in fisheriesPublication . Burg, Theresa M.; Catry, Paulo; Ryan, Peter G.; Phillips, Richard A.1. Previous genetic studies found evidence of at least three distinct groups of black‐browed Thalassarche melanophris and Campbell Thalassarche impavida albatrosses in the Southern Ocean. Almost 350 individuals including samples from additional breeding sites on the Falkland Islands and South Georgia Island were screened using mitochondrial DNA. 2. The new sequence data using lineage specific PCR primers provided further support for the taxonomic split of T. melanophris and T. impavida and separate management of the two distinct T. melanophris groups. 3. In total, 207 black‐browed albatrosses killed in longline fisheries were screened. Approximately 93% of the bycaught birds from the Falkland Islands belonged to the Falkland mtDNA group and the remaining birds had mtDNA from the Widespread T. melanophris group; these proportions were similar to those in the local Falklands breeding population. The South African and South Georgia bycatch samples predominantly comprised the Widespread T. melanophris group, with only one bird from each area containing Falkland mtDNA. Lastly, 81% of the albatrosses bycaught off New Zealand had T. impavida mtDNA and the remaining four birds were Widespread T. melanophris. These differences in bycatch composition matched what is known from tracking and banding data about the at‐sea distribution of black‐browed albatrosses. 4. Based on the mtDNA results and current population trends, consideration should be given to assigning regional IUCN status for the different breeding populations.
- Genomics detects population structure within and between ocean basins in a circumpolar seabird: The white‐chinned petrelPublication . Rexer-Huber, Kalinka; Veale, Andrew; Catry, Paulo; Cherel, Yves; Dutoit, Ludovic; Foster, Yasmin; McEwan, John C.; Parker, Graham C.; Phillips, Richard; Ryan, Peter G.; Stanworth, Andrew J.; Van Stijn, Tracey; Thompson, David R.; Waters, Jonathan; Robertson, BruceThe Southern Ocean represents a continuous stretch of circumpolar marine habitat, but the potential physical and ecological drivers of evolutionary genetic differentiation across this vast ecosystem remain unclear. We tested for genetic structure across the full circumpolar range of the white-chinned petrel (Procellaria aequinoctialis) to unravel the potential drivers of population differentiation and test alternative population differentiation hypotheses. Following range-wide comprehensive sampling, we applied genomic (genotyping-by-sequencing or GBS; 60,709 loci) and standard mitochondrial-marker approaches (cytochrome b and first domain of control region) to quantify genetic diversity within and among island populations, test for isolation by distance, and quantify the number of genetic clusters using neutral and outlier (non-neutral) loci. Our results supported the multi-region hypothesis, with a range of analyses showing clear three-region genetic population structure, split by ocean basin, within two evolutionary units. The most significant differentiation between these regions confirmed previous work distinguishing New Zealand and nominate subspecies. Although there was little evidence of structure within the island groups of the Indian or Atlantic oceans, a small set of highly-discriminatory outlier loci could assign petrels to ocean basin and potentially to island group, though the latter needs further verification. Genomic data hold the key to revealing substantial regional genetic structure within wide-ranging circumpolar species previously assumed to be panmictic.
- Global phenological insensitivity to shifting ocean temperatures among seabirdsPublication . Keogan, Katharine; Daunt, Francis; Wanless, Sarah; Phillips, Richard A.; Walling, Craig A.; Agnew, Philippa; Ainley, David G.; Anker-Nilssen, Tycho; Ballard, Grant; Barrett, Robert T.; Barton, Kerry J.; Bech, Claus; Becker, Peter; Berglund, Per-Arvid; Bollache, Loïc; Bond, Alexander L.; Bouwhuis, Sandra; Bradley, Russell W.; Burr, Zofia M.; Camphuysen, Kees; Catry, Paulo; Chiaradia, Andre; Christensen-Dalsgaard, Signe; Cuthbert, Richard; Dehnhard, Nina; Descamps, Sébastien; Diamond, Tony; Divoky, George; Drummond, Hugh; Dugger, Katie M.; Dunn, Michael J.; Emmerson, Louise; Erikstad, Kjell Einar; Fort, Jérôme; Fraser, William; Genovart, Meritxell; Gilg, Olivier; González-Solís, Jacob; Granadeiro, José Pedro; Grémillet, David; Hansen, Jannik; Hanssen, Sveinn A.; Harris, Mike; Hedd, April; Hinke, Jefferson; Igual, José Manuel; Jahncke, Jaime; Jones, Ian; Kappes, Peter J.; Lang, Johannes; Langset, Magdalene; Lescroël, Amélie; Lorentsen, Svein-Håkon; Lyver, Phil O’B.; Mallory, Mark; Moe, Børge; Montevecchi, William A.; Monticelli, David; Mostello, Carolyn; Newell, Mark; Nicholson, Lisa; Nisbet, Ian; Olsson, Olof; Oro, Daniel; Pattison, Vivian; Poisbleau, Maud; Pyk, Tanya; Quintana, Flavio; Ramos, Jaime A.; Ramos, Raül; Reiertsen, Tone Kirstin; Rodríguez, Cristina; Ryan, Peter G.; Sanz-Aguilar, Ana; Schmidt, Niels M.; Shannon, Paula; Sittler, Benoit; Southwell, Colin; Surman, Christopher; Svagelj, Walter S.; Trivelpiece, Wayne; Warzybok, Pete; Watanuki, Yutaka; Weimerskirch, Henri; Wilson, Peter R.; Wood, Andrew G.; Phillimore, Albert B.; Lewis, SueReproductive timing in many taxa plays a key role in determining breeding productivity1, and is often sensitive to climatic conditions2. Current climate change may alter the timing of breeding at different rates across trophic levels, potentially resulting in temporal mismatch between the resource requirements of predators and their prey3. This is of particular concern for highertrophic- level organisms, whose longer generation times confer a lower rate of evolutionary rescue than primary producers or consumers4. However, the disconnection between studies of ecological change in marine systems makes it difficult to detect general changes in the timing of reproduction5. Here, we use a comprehensive meta-analysis of 209 phenological time series from 145 breeding populations to show that, on average, seabird populations worldwide have not adjusted their breeding seasons over time (− 0.020 days yr−1) or in response to sea surface temperature (SST) (− 0.272 days °C−1) between 1952 and 2015. However, marked between-year variation in timing observed in resident species and some Pelecaniformes and Suliformes (cormorants, gannets and boobies) may imply that timing, in some cases, is affected by unmeasured environmental conditions. This limited temperature-mediated plasticity of reproductive timing in seabirds potentially makes these top predators highly vulnerable to future mismatch with lower-trophic-level resources.
- Global political responsibility for the conservation of albatrosses and large petrelsPublication . Beal, Martin; Dias, Maria P.; Phillips, Richard A.; Oppel, Steffen; Hazin, Carolina; Pearmain, Elizabeth J.; Adams, Josh; Anderson, David J.; Antolos, Michelle; Arata, Javier; Arcos, José Manuel; Arnould, John P. Y.; Awkerman, Jill; Bell, Elizabeth; BELL, Mike; Carey, Mark; Carle, Ryan; Clay, Thomas A.; Cleeland, Jaimie; Colodro, Valentina; Conners, Melinda; Flores, Marta Cruz; Cuthbert, Richard; Delord, Karine; Deppe, Lorna; Dilley, Ben J.; Dinis, Herculano; Elliott, Graeme; De Felipe, Fernanda; Felis, Jonathan; Forero, Manuela G.; Freeman, Amanda; Fukuda, Akira; González-Solís, Jacob; Granadeiro, J. P.; Hedd, April; Hodum, Peter; Igual, Jose Manuel; Jaeger, Audrey; Landers, Timothy; Le Corre, Matthieu; Makhado, Azwianewi; Metzger, Benjamin; Militão, Teresa; Montevecchi, William A.; Pujol, Virginia Morera; Herrero, Leia Navarro; Nel, Deon; Nicholls, David; Oro, Daniel; Ouni, Ridha; Ozaki, Kiyoaki; Quintana, Flavio; Ramos, Raül; Reid, Tim; Reyes-González, José Manuel; Robertson, Christopher; Robertson, Graham; Romdhane, Mohamed Salah; Ryan, Peter G.; Sagar, Paul; Sato, Fumio; Schoombie, Stefan; Scofield, Richard; Shaffer, Scott; Shah, Nirmal Jivan; Stevens, Kim L.; Surman, Christopher; Suryan, Robert M.; Takahashi, Akinori; Tatayah, Vikash; Taylor, Graeme; Thompson, David R.; Torres, Leigh; Walker, Kath; Wanless, Ross; Waugh, Susan M.; Weimerskirch, Henri; Yamamoto, Takashi; Zajkova, Zuzana; Zango, Laura; Catry, PauloMigratory marine species cross political borders and enter the high seas, where the lack of an effective global management framework for biodiversity leaves them vulnerable to threats. Here, we combine 10,108 tracks from 5775 individual birds at 87 sites with data on breeding population sizes to estimate the relative year-round importance of national jurisdictions and high seas areas for 39 species of albatrosses and large petrels. Populations from every country made extensive use of the high seas, indicating the stake each country has in the management of biodiversity in international waters. We quantified the links among national populations of these threatened seabirds and the regional fisheries management organizations (RFMOs) which regulate fishing in the high seas. This work makes explicit the relative responsibilities that each country and RFMO has for the management of shared biodiversity, providing invaluable information for the conservation and management of migratory species in the marine realm.
- Metapopulation distribution shapes year‐round overlap with fisheries for a circumpolar seabirdPublication . Rexer‐Huber, Kalinka; Clay, Thomas A.; Catry, Paulo; Debski, Igor; Parker, Graham; Ramos, Raül; Robertson, Bruce C.; Ryan, Peter G.; Sagar, Paul M.; Stanworth, Andrew; Thompson, David R.; Tuck, Geoffrey N.; Weimerskirch, Henri; Phillips, Richard A.Although fisheries bycatch is the greatest threat to many migratory marine megafauna, it remains unclear how population exposure to bycatch varies across the global range of threatened species. Such assessments across multiple populations are crucial for understanding variation in impacts and for identifying the management bodies responsible for reducing bycatch. Here, we combine extensive biologging data from white‐chinned petrel (Procellaria aequinoctialis) populations (representing >98% of their global breeding population) with pelagic and demersal longline and trawl fishing effort to map the global distribution and fisheries‐overlap hotspots for the most bycaught seabird in the Southern Hemisphere. We tracked the year‐round movements of 132 adults in 2006–2018 and examined spatial overlap among seven populations comprising three genetically distinct groupings (metapopulations). Foraging areas during the nonbreeding season were more concentrated than during breeding, with birds from all populations migrating to continental shelf or upwelling zones, but with low spatial overlap among metapopulations. Fisheries overlap differed more among than within metapopulations, underlining that these should be considered separate management units. Overlap with pelagic longline fisheries was greatest for Indian Ocean populations, and from the fleets of South Africa, Japan, Taiwan, and Spain, off southern Africa and in the High Seas. Overlap with demersal longline and trawl fisheries was greatest for Indian and Atlantic Ocean populations, within the Exclusive Economic Zones of South Africa, Namibia, and Argentina, and with the South Korean demersal longline fleet in the High Seas. The high overlap with South Korean longliners in the southwest Atlantic Ocean is of particular concern as demersal fishing in this region is not covered by any Regional Fisheries Management Organization (RFMO). We also identified fisheries‐overlap hotspots within RFMOs where there are no seabird‐bycatch mitigation requirements (1.5%–53.1% of total overlap within the area of competence of each RFMO), or where current mitigation regulations need to be strengthened. Our recommendations are that management bodies target the high‐priority fisheries we have identified for improved bycatch monitoring, mandatory best‐practice bycatch mitigation, and close monitoring of compliance, given the conservation concerns for white‐chinned petrels and other threatened seabirds. Biologging, Bycatch mitigatio, Geolocator, Longline fisheries, Migratory connectivity, Regional Fisheries Management Organization, Trawl fisheries, White-chinned petrel
- Multispecies tracking reveals a major seabird hotspot in the North AtlanticPublication . Davies, Tammy E.; Carneiro, Ana P.B.; Tarzia, Marguerite; Wakefield, Ewan; Hennicke, Janos C.; Frederiksen, Morten; Hansen, Erpur Snær; Campos, Bruna; Hazin, Carolina; Lascelles, Ben; Anker‐Nilssen, Tycho; Arnardóttir, Hólmfríður; Barrett, Robert T.; Biscoito, Manuel; Bollache, Loïc; Boulinier, Thierry; Catry, Paulo; Ceia, Filipe R.; Chastel, Olivier; Christensen‐Dalsgaard, Signe; Cruz‐Flores, Marta; Danielsen, Jóhannis; Daunt, Francis; Dunn, Euan; Egevang, Carsten; Fagundes, Ana Isabel; Fayet, Annette L.; Fort, Jérôme; Furness, Robert W.; Gilg, Olivier; González‐Solís, Jacob; Granadeiro, J. P.; Grémillet, David; Guilford, Tim; Hanssen, Sveinn Are; Harris, Michael P.; Hedd, April; Huffeldt, Nicholas Per; Jessopp, Mark; Kolbeinsson, Yann; Krietsch, Johannes; Lang, Johannes; Linnebjerg, Jannie Fries; Lorentsen, Svein‐Håkon; Madeiros, Jeremy; Magnusdottir, Ellen; Mallory, Mark L.; McFarlane Tranquilla, Laura; Merkel, Flemming R.; Militão, Teresa; Moe, Børge; Montevecchi, William A.; Morera‐Pujol, Virginia; Mosbech, Anders; Neves, Verónica; Newell, Mark A.; Olsen, Bergur; Paiva, Vitor H.; Peter, Hans‐Ulrich; Petersen, Aevar; Phillips, Richard A.; Ramírez, Iván; Ramos, Jaime A.; Ramos, Raül; Ronconi, Robert A.; Ryan, Peter G.; Schmidt, Niels Martin; Sigurðsson, Ingvar A.; Sittler, Benoît; Steen, Harald; Stenhouse, Iain J.; Strøm, Hallvard; Systad, Geir H. R.; Thompson, Paul; Thórarinsson, Thorkell L.; Bemmelen, Rob S.A.; Wanless, Sarah; Zino, Francis; Dias, Maria P.The conservation of migratory marine species, including pelagic seabirds, is challenging because their movements span vast distances frequently beyond national jurisdictions. Here, we aim to identify important aggregations of seabirds in the North Atlantic to inform ongoing regional conservation efforts. Using tracking, phenology, and population data, we mapped the abundance and diversity of 21 seabird species. This revealed a major hotspot associated with a discrete area of the subpolar frontal zone, used annually by 2.9–5 million seabirds from ≥56 colonies in the Atlantic: the first time this magnitude of seabird concentrations has been documented in the high seas. The hotspot is temporally stable and amenable to site-based conservation and is under consideration as a marine protected area by the OSPAR Commission. Protection could help mitigate current and future threats facing species in the area. Overall, our approach provides an exemplar data-driven pathway for future conservation efforts on the high seas.
- Seabird migration strategies: Flight budgets, diel activity patterns, and lunar influencePublication . Bonnet-Lebrun, Anne-Sophie; Dias, Maria P.; Phillips, Richard; Granadeiro, José P.; Brooke, M. de L.; Chastel, Olivier; Clay, Thomas A.; Fayet, Annette; GILG, Olivier; González-Solís, Jacob; Guilford, Tim; Hanssen, Sveinn Are; Hedd, April; Jaeger, Audrey; Krietsch, Johannes; Lang, Johannes; Le Corre, Matthieu; Militão, Teresa; Moe, Børge; Montevecchi, William A.; Peter, Hans-Ulrich; Pinet, Patrick; Rayner, Matt J.; Reid, Tim; Reyes-González, José Manuel; Ryan, Peter G.; Sagar, Paul M.; Schmidt, Niels M.; Thompson, David R.; van Bemmelen, Rob; Watanuki, Yutaka; Weimerskirch, Henri; Yamamoto, Takashi; Catry, PauloEvery year, billions of birds undertake extensive migrations between breeding and nonbreeding areas, facing challenges that require behavioural adjustments, particularly to flight timing and duration. Such adjustments in daily activity patterns and the influence of extrinsic factors (e.g., environmental conditions, moonlight) have received much more research attention in terrestrial than marine migrants. Taking advantage of the widespread deployment in recent decades of combined light-level geolocator-immersion loggers, we investigated diel organisation and influence of the moon on flight activities during the non-breeding season of 21 migrant seabird species from a wide taxonomic range (6 families, 3 orders). Migrant seabirds regularly stopped (to either feed or rest) migration, unlike some terrestrial and wetland birds which fly non-stop. We found an overall increase for most seabird species in time in flight and, for several species, also in flight bout duration, during migration compared to when resident at the non-breeding grounds. Additionally, several nocturnal species spent more of the day in flight during migration than at non-breeding areas, and vice versa for diurnal species. Nocturnal time in flight tended to increase during full moon, both during migration and at the nonbreeding grounds, depending on species. Our study provides an extensive overview of activity patterns of migrant seabirds, paving the way for further research on the underlying mechanisms and drivers.