Repository logo
 
Loading...
Thumbnail Image
Publication

Prediction of dementia patients: A comparative approach using parametric vs. non parametric classifiers

Use this identifier to reference this record.
Name:Description:Size:Format: 
SPE 2012 in press (actas).pdf2.07 MBAdobe PDF Download

Advisor(s)

Abstract(s)

In this paper, we report a comparison study of 7 non parametric classifiers (Multilayer perceptron Neural Networks, Radial Basis Function Neural Networks, SupportVectorMachines, CART, CHAID and QUEST Classification trees and Random Forests) as compared to Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression tested in a real data application of mild cognitive impaired elderly patients conversion to dementia. When classification results are compared both on overall accuracy, specificity and sensitivity, Linear Discriminant Analysis and Random Forests rank first among all the classifiers.

Description

Keywords

Citation

In Actas do XVII Congresso Anual da Sociedade Portuguesa de Estatística (pp. 241-251). Lisboa: Sociedade Portuguesa de Estatística

Research Projects

Organizational Units

Journal Issue

Publisher

Sociedade Portuguesa de Estatística

CC License