Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Assessment of fight outcome is needed to activate socially driven transcriptional changes in the zebrafish brain
Publication . Oliveira, Rui Filipe; Simões, José Miguel; Teles, Magda; Oliveira, Catarina R.; Becker, Jorg D.; Lopes, João Sollari
Group living animals must be able to express different behavior profiles depending on their social status. Therefore, the same genotype may translate into different behavioral phenotypes through socially driven differential gene expression. However, how social information is translated into a neurogenomic response and what are the specific cues in a social interaction that signal a change in social status are questions that have remained unanswered. Here, we show for the first time, to our knowledge, that the switch between status-specific neurogenomic states relies on the assessment of fight outcome rather than just on self- or opponent-only assessment of fighting ability. For this purpose, we manipulated the perception of fight outcome in male zebrafish and measured its impact on the brain transcriptome using a zebrafish whole genome gene chip. Males fought either a real opponent, and a winner and a loser were identified, or their own image on a mirror, in which case, despite expressing aggressive behavior, males did not experience either a victory or a defeat. Massive changes in the brain transcriptome were observed in real opponent fighters, with losers displaying both a higher number of differentially expressed genes and of coexpressed gene modules than winners. In contrast, mirror fighters expressed a neurogenomic state similar to that of noninteracting fish. The genes that responded to fight outcome included immediate early genes and genes involved in neuroplasticity and epigenetic modifications. These results indicate that, even in cognitively simple organisms such as zebrafish, neurogenomic responses underlying changes in social status rely on mutual assessment of fighting ability.
Agonistic interactions elicit rapid changes in brain nonapeptide levels in zebrafish
Publication . Teles, Magda; Gozdowska, Magdalena; Kalamarz-Kubiak, Hanna; Kulczykowska, Ewa; Oliveira, Rui Filipe
The teleost fish nonapeptides, arginine vasotocin (AVT) and isotocin (IT), have been implicated in the regulation of social behavior. These peptides are expected to be involved in acute and transient changes in social context, in order to be efficient in modulating the expression of social behavior according to changes in the social environment. Here we tested the hypothesis that short-term social interactions are related to changes in the level of both nonapeptides across different brain regions. For this purpose we exposed male zebrafish to two types of social interactions: (1) real opponent interactions, from which a Winner and a Loser emerged; and (2) mirror-elicited interactions, that produced individuals that did not experience a change in social status despite expressing similar levels of aggressive behavior to those of participants in real-opponent fights. Non-interacting individuals were used as a reference group. Each social phenotype (i.e. Winners, Losers, Mirror-fighters) presented a specific brain profile of nonapeptides when compared to the reference group. Moreover, the comparison between the different social phenotypes allowed to address the specific aspects of the interaction (e.g. assessment of opponent aggressive behavior vs. self-assessment of expressed aggressive behavior) that are linked with neuropeptide responses. Overall, agonistic interactions seem to be more associated with the changes in brain AVT than IT, which highlights the preferential role of AVT in the regulation of aggressive behavior already described for other species.
Quantifying aggressive behavior in zebrafish
Publication . Teles, Magda; Oliveira, Rui Filipe
Aggression is a complex behavior that influences social relationships and can be seen as adaptive or maladaptive depending on the context and intensity of expression. A model organism suitable for genetic dissection of the underlying neural mechanisms of aggressive behavior is still needed. Zebrafish has already proven to be a powerful vertebrate model organism for the study of normal and pathological brain function. Despite the fact that zebrafish is a gregarious species that forms shoals, when allowed to interact in pairs, both males and females express aggressive behavior and establish dominance hierarchies. Here, we describe two protocols that can be used to quantify aggressive behavior in zebrafish, using two different paradigms: (1) staged fights between real opponents and (2) mirror-elicited fights. We also discuss the methodology for the behavior analysis, the expected results for both paradigms, and the advantages and disadvantages of each paradigm in face of the specific goals of the study.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

SFRH

Funding Award Number

SFRH/BD/44848/2008

ID