Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Spatial and temporal aggregation of albatross chick mortality events in the Falklands suggests a role for an unidentified infectious diseasePublication . Ventura, Francesco; Granadeiro, José Pedro; Matias, Rafael; Catry, PauloIn the context of environmental change, determining the causes underpinning unusual mortality events of vertebrate species is a crucial conservation goal. This is particularly true for polar and sub-polar colonial seabirds, often immunologically naïve to new and emerging diseases. Here, we investigate the patterns of black-browed albatross (Thalassarche melanophris) chick mortality events unrelated to predation recorded between the 2004/05 and 2019/2020 breeding seasons in four colonies across the species range in the Falklands. The prevalence of these mortality events was highly variable across years, causing the death of between 3 and 40% of all chicks in the studied plots. With few exceptions, mortality was patchily distributed. Using clustering methodologies, we identified the spatio-temporal mortality clusters based on the nest locations and chick death date. Using generalised linear models and generalised additive mixed-effects models we found that chicks nearer the first mortality event were predicted to die before those in more distant nests. The probability of death increased with age and was highest for chicks close to nests where a chick had died previously. Our findings, along with the symptoms consistently exhibited by most deceased chicks in the study, strongly suggest the prevalence of a widespread infectious disease, potentially with a common aetiology, both in areas with regular and with very rare human presence. Understanding the causes driving these disease-related mortality events, which seem different from the outbreaks documented in the literature, is a conservation priority for the Falklands black-browed albatross population, which comprises over 70% of the species global population.
- Gadfly petrels use knowledge of the windscape, not memorized foraging patches, to optimize foraging trips on ocean-wide scalesPublication . Ventura, Francesco; Granadeiro, José Pedro; Padget, Oliver; Catry, PauloSeabirds must often travel vast distances to exploit heterogeneously distributed oceanic resources, but how routes and destinations of foraging trips are optimized remains poorly understood. Among the seabirds, gadfly petrels (Pterodroma spp.) are supremely adapted for making efficient use of wind energy in dynamic soaring flight. We used GPS tracking data to investigate the role of wind in the flight behaviour and foraging strategy of the Desertas petrel, Pterodroma deserta. We found that rather than visiting foraging hotspots, Desertas petrels maximize prey encounter by covering some of the longest distances known in any animal in a single foraging trip (up to 12 000 km) over deep, pelagic waters. Petrels flew with consistent crosswind (relative wind angle 60°), close to that which maximizes their groundspeed. By combining state-space modelling with a series of comparisons to simulated foraging trips (reshuffled-random, rotated, time-shifted, reversed), we show that this resulted in trajectories that were close to the fastest possible, given the location and time. This wind use is thus consistent both with birds using current winds to fine-tune their routes and, impressively, with an a priori knowledge of predictable regional-scale wind regimes, facilitating efficient flight over great distances before returning to the home colony.