Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Important At-Sea areas of colonial breeding marine predators on the Southern Patagonian ShelfPublication . Baylis, Matthew; Tierney, Megan; Orben, Rachael; Evans, Victoria Warwick; Wakefield, Ewan; Grecian, William James; Trathan, Phil; Reisinger, Ryan R.; Ratcliffe, Norman Arthur; Croxall, John; Campioni, Letizia; Catry, Paulo; Crofts, Sarah; Boersma, P. Dee; Galimberti, Filippo; Granadeiro, José Pédro; Handley, Jonathan; Hayes, Sean; Hedd, April; Masello, Juan; Montevecchi, William A.; Pütz, Klemens; Quillfeldt, Petra; Rebstock, Ginger A.; Sanvito, Simona; Staniland, Iain; Brickle, PaulThe Patagonian Shelf Large Marine Ecosystem supports high levels of biodiversity and endemism and is one of the most productive marine ecosystems in the world. Despite the important role marine predators play in structuring the ecosystems, areas of high diversity where multiple predators congregate remains poorly known on the Patagonian Shelf. Here, we used biotelemetry and biologging tags to track the movements of six seabird species and three pinniped species breeding at the Falkland Islands. Using Generalized Additive Models, we then modelled these animals' use of space as functions of dynamic and static environmental indices that described their habitat. Based on these models, we mapped the predicted distribution of animals from both sampled and unsampled colonies and thereby identified areas where multiple species were likely to overlap at sea. Maximum foraging trip distance ranged from 79 to 1,325 km. However, most of the 1,891 foraging trips by 686 animals were restricted to the Patagonian Shelf and shelf slope, which highlighted a preference for these habitats. Of the seven candidate explanatory covariates used to predict distribution, distance from the colony was retained in models for all species and negatively affected the probability of occurrence. Predicted overlap among species was highest on the Patagonian Shelf around the Falkland Islands and the Burdwood Bank. The predicted area of overlap is consistent with areas that are also important habitat for marine predators migrating from distant breeding locations. Our findings provide comprehensive multi-species predictions for some of the largest marine predator populations on the Patagonian Shelf, which will contribute to future marine spatial planning initiatives. Crucially, our findings highlight that spatially explicit conservation measures are likely to benefit multiple species, while threats are likely to impact multiple species.
- Overlap between marine predators and proposed Marine Managed Areas on the Patagonian ShelfPublication . Baylis, Alastair; Lecea, Ander M. De; Tierney, Megan; Orben, Rachael; Ratcliffe, Norman; Wakefield, Ewan; Catry, Paulo; Campioni, Letizia; Costa, Marina; Boersma, P. Dee; Galimberti, Filippo; Granadeiro, José P.; Masello, Juan; Puetz, Klemens; Quillfeldt, Petra; Rebstock, Ria; Sanvito, Simona; Staniland, Iain; Brickle, PaulAbstract. Static (fixed-boundary) protected areas are key ocean conservation strategies, and marine higher predator distribution data can play a leading role toward identifying areas for conservation action. The Falkland Islands are a globally significant site for colonial breeding marine higher predators (i.e., seabirds and pinnipeds). However, overlap between marine predators and Falkland Islands proposed Marine Managed Areas (MMAs) has not been quantified. Hence, to provide information required to make informed decisions regarding the implementation of proposed MMAs, our aims were to objectively assess how the proposed MMA network overlaps with contemporary estimates of marine predator distribution. We collated tracking data (1999–2019) and used a combination of kernel density estimation and model-based predictions of spatial usage to quantify overlap between colonial breeding marine predators and proposed Falkland Islands MMAs. We also identified potential IUCN Key Biodiversity Areas (pKBAs) using (1) kernel density based methods originally designed to identify Important Bird and Biodiversity Areas (IBAs) and (2) habitat preference models. The proposed inshore MMA, which extends three nautical miles from the Falkland Islands, overlapped extensively with areas used by colonial breeding marine predators. This reflects breeding colonies being distributed throughout the Falklands archipelago, and use being high adjacent to colonies due to central-place foraging constraints. Up to 45% of pKBAs identified via kernel density estimation were located within the proposed MMAs. In particular, the proposed Jason Islands Group MMA overlapped with pKBAs for three marine predator species, suggesting it is a KBA hot spot. However, tracking data coverage was incomplete, which biased pKBAs identified using kernel density methods, to colonies tracked. Moreover, delineation of pKBA boundaries were sensitive to the choice of smoothing parameter used in kernel density estimation. Delineation based on habitat model predictions for both sampled and unsampled colonies provided less biased estimates, and revealed 72% of the Falkland Islands Conservation Zone was likely a KBA. However, it may not be practical to consider such a large area for fixed-boundary management. In the context of wide-ranging marine predators, emerging approaches such as dynamic ocean management could complement static management frameworks such as MMAs, and provide protection at relevant spatiotemporal scales.