Repository logo
 

Search Results

Now showing 1 - 3 of 3
  • Sympatric threatened Iberian leuciscids exhibit differences in Aeromonas diversity and skin lesions’ prevalence
    Publication . Grilo, Miguel; Chambel, Lélia; Marques, Tiago A.; Sousa, Carla; Robalo, Joana; Oliveira, Manuela
    Assessments regarding health aspects of Iberian leuciscids are limited. There is currently an information gap regarding effects of infectious diseases on these populations and their role as a possible conservation threat. Moreover, differences in susceptibility to particular agents, such as Aeromonas spp., by different species/populations is not clear. To understand potential differences in Aeromonas diversity and load, as well as in the prevalence and proportion of skin lesions, in fishes exposed to similar environmental conditions, an observational study was implemented. Using a set of 12 individuals belonging to two sympatric Iberian leuciscid species (Squalius pyrenaicus and Iberochondrostoma lusitanicum), the skin lesion score in each individual was analyzed. Furthermore, a bacterial collection of Aeromonas spp. isolated from each individual was created and isolates’ load was quantified by plate counting, identified at species level using a multiplex-PCR assay and virulence profiles established using classical phenotypic methods. The similarity relationships of the isolates were evaluated using a RAPD analysis. The skin lesion score was significantly higher in S. pyrenaicus, while the Aeromonas spp. load did not differ between species. When analyzing Aeromonas species diversity between fishes, different patterns were observed. A predominance of A. hydrophila was detected in S. pyrenaicus individuals, while I. lusitanicum individuals displayed a more diverse structure. Similarly, the virulence index of isolates from S. pyrenaicus was higher, mostly due to the isolated Aeromonas species. Genomic typing clustered the isolates mainly by fish species and skin lesion score. Specific Aeromonas clusters were associated with higher virulence indexes. Current results suggest potential differences in susceptibility to Aeromonas spp. at the fish species/individual level, and constitute important knowledge for proper wildlife management through the signalization of at-risk fish populations and hierarchization of conservation measures.
  • Molecular epidemiology, virulence traits and antimicrobial resistance signatures of aeromonas spp. in the critically endangered iberochondrostoma lusitanicum follow geographical and seasonal patterns
    Publication . Grilo, Miguel; Isidoro, Sara; Chambel, Lélia; Marques, Carolina S.; Marques, Tiago A.; Sousa-Santos, C.; Robalo, Joana; Oliveira, Manuela
    Despite the fact that freshwater fish populations are experiencing severe declines worldwide, our knowledge on the interaction between endangered populations and pathogenic agents remains scarce. In this study, we investigated the prevalence and structure of Aeromonas communities isolated from the critically endangered Iberochondrostoma lusitanicum, a model species for threatened Iberian leuciscids, as well as health parameters in this species. Additionally, we evaluated the virulence profiles, antimicrobial resistance signatures and genomic relationships of the Aeromonas isolates. Lesion prevalence, extension and body condition were deeply affected by location and seasonality, with poorer performances in the dry season. Aeromonas composition shifted among seasons and was also different across river streams. The pathogenic potential of the isolates significantly increased during the dry season. Additionally, isolates displaying clinically relevant antimicrobial resistance phenotypes (carbapenem and fluroquinolone resistance) were detected. As it inhabits intermittent rivers, often reduced to disconnected pools during the summer, the dry season is a critical period for I. lusitanicum, with lower general health status and a higher potential of infection by Aeromonas spp. Habitat quality seems a determining factor on the sustainable development of this fish species. Also, these individuals act as reservoirs of important antimicrobial resistant bacteria with potential implications for public health.
  • Aeromonas spp. Prevalence, virulence, and antimicrobial resistance in an ex situ program for tThreatened freshwater fish—A pilot study with protective measures
    Publication . Grilo, Miguel; Amaro, Guadalupe; Chambel, Lélia; Marques, Carolina S.; Marques, Tiago A.; Gil, Fátima; Sousa-Santos, Carla; Robalo, Joana; Oliveira, Manuela
    Ex situ breeding programs are important conservation tools for endangered freshwater fish. However, developing husbandry techniques that decrease the likelihood of disease, antimicrobial resistance, and virulence determinants acquisition during this process is challenging. In this pilot study, we conducted a captivity experiment with Portuguese nase (Iberochondrostoma lusitanicum), a critically endangered leuciscid species, to investigate the influence of simple protective measures (i.e., material disinfection protocols and animal handling with gloves) on the dynamics of a potential pathogenic genus, Aeromonas, as well as its virulence profiles and antimicrobial resistance signatures. Our findings show that antimicrobial resistance in Aeromonas spp. collected from I. lusitanicum significantly increased during the extent of the assay (5 weeks), with all isolates collected at the end of the study classified as multidrug-resistant. Additionally, humans handling fishes without protective measures were colonized by Aeromonas spp. The use of protective measures suggested a decreasing trend in Aeromonas spp. prevalence in I. lusitanicum, while bacterial isolates displayed significantly lower virulence index values when virulence phenotypical expression was tested at 22 °C. Despite this study representing an initial trial, which needs support from further research, protective measures tested are considered a simple tool to be applied in ex situ breeding programs for aquatic animals worldwide. Furthermore, current results raise concern regarding antimicrobial resistance amplification and zoonotic transmission of Aeromonas spp. in aquatic ex situ programs.