Browsing by Author "Ferreira, Liliana J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Abiotic stress and induced DNA hypomethylation cause interphase chromatin structural changes in rice rDNA lociPublication . Santos, Ana Paula; Ferreira, Liliana J.; Maroco, João; Oliveira, Maria MargaridaGlobal climate change, i.e. higher and more variable temperatures, and a gain in soil salinity are increasing plant stress with direct consequences on crop yield and quality levels. Rice productivity is strongly affected by abiotic stress conditions. The regulation of chromatin structure in response to environmental stress is poorly understood. We investigated the interphase chromatin organization from rice plants in non-stress versus stress conditions. We have used a cytogenetic approach, based on fluorescence in situ hybridization (FISH) with 45S, 5S rDNA and centromeric probes on rice tissue sections. The abiotic stress conditions included cold, heat and mild salinity and were applied during seed germination. In contrast to cold, saline and heat stresses caused extensive decondensation of 45S rDNA chromatin and also an increase in the distance between the 2 homologous 5S rDNA loci. 5-Azacytidine (5-AC), a DNA hypomethylating drug, greatly increased 45S rDNA chromatin decondensation and interestingly was able to induce polarization of centromeres in rice interphase nuclei. The abiotic stresses tested did not perturb the spatial position of centromeres, typically with circular arrangement around the nucleolus. The results suggest a role for chromatin plasticity in a world of climate changes.
- Salt tolerant and sensitive rice varieties display differential methylome flexibility under salt stressPublication . Ferreira, Liliana J.; Azevedo, Vanessa; Maroco, João; Oliveira, Maria Margarida; Santos, Ana PaulaDNA methylation has been referred as an important player in plant genomic responses to environmental stresses but correlations between the methylome plasticity and specific traits of interest are still far from being understood. In this study, we inspected global DNA methylation levels in salt tolerant and sensitive rice varieties upon salt stress imposition. Global DNA methylation was quantified using the 5-methylcytosine (5mC) antibody and an ELISAbased technique, which is an affordable and quite pioneer assay in plants, and in situ imaging of methylation sites in interphase nuclei of tissue sections. Variations of global DNA methylation levels in response to salt stress were tissue- and genotype-dependent. We show a connection between a higher ability of DNA methylation adjustment levels and salt stress tolerance. The salt-tolerant rice variety Pokkali was remarkable in its ability to quickly relax DNA methylation in response to salt stress. In spite of the same tendency for reduction of global methylation under salinity, in the salt-sensitive rice variety IR29 such reduction was not statistically supported. In ‘Pokkali’, the salt stress-induced demethylation may be linked to active demethylation due to increased expression of DNA demethylases under salt stress. In ‘IR29’, the induction of both DNA demethylases and methyltransferases may explain the lower plasticity of DNA methylation. We further show that mutations for epigenetic regulators affected specific phenotypic parameters related to salinity tolerance, such as the root length and biomass. This work emphasizes the role of differential methylome flexibility between salt tolerant and salt sensitive rice varieties as an important player in salt stress tolerance, reinforcing the need to better understand the connection between epigenetic networks and plant responses to environmental stresses.