Repository logo
 
Loading...
Project Logo
Research Project

Capacity Building at InBIO for Research and Innovation Using Environmental Metagenomics

Funder

Organizational Unit

Authors

Publications

The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems
Publication . Pawlowski, Jan; Kelly-Quinn, Mary; Altermatt, Florian; Apothéloz-Perret-Gentil, Laure; Beja, Pedro; Boggero, Angela; Borja, Angel; Bouchez, Agnès; Cordier, Tristan; Domaizon, Isabelle; Feio, Maria Joao; Filipe, Ana Filipa; Fornaroli, Riccardo; Graf, Wolfram; Herder, Jelger; van der Hoorn, Berry; Iwan Jones, J.; Sagova-Mareckova, Marketa; Moritz, Christian; Barquín, Jose; Piggott, Jeremy J.; Pinna, Maurizio; Rimet, Frederic; Rinkevich, Buki; Sousa-Santos, Carla; Specchia, Valeria; Trobajo, Rosa; Vasselon, Valentin; Vitecek, Simon; Zimmerman, Jonas; Weigand, Alexander; Leese, Florian; Kahlert, Maria
The bioassessment of aquatic ecosystems is currently based on various biotic indices that use the occurrence and/or abundance of selected taxonomic groups to define ecological status. These conventional indices have some limitations, often related to difficulties in morphological identification of bioindicator taxa. Recent development of DNA barcoding and metabarcoding could potentially alleviate some of these limitations, by using DNA sequences instead of morphology to identify organisms and to characterize a given ecosystem. In this paper, we review the structure of conventional biotic indices, and we present the results of pilot metabarcoding studies using environmental DNA to infer biotic indices. We discuss the main advantages and pitfalls of metabarcoding approaches to assess parameters such as richness, abundance, taxonomic composition and species ecological values, to be used for calculation of biotic indices. We present some future developments to fully exploit the potential of metabarcoding data and improve the accuracy and precision of their analysis. We also propose some recommendations for the future integration of DNA metabarcoding to routine biomonitoring programs.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

European Commission

Funding programme

H2020

Funding Award Number

668981

ID