Repository logo
 
Loading...
Profile Picture
Person

van Moorselaar, Dirk

Search Results

Now showing 1 - 3 of 3
  • Visual statistical learning requires attention
    Publication . Duncan, Dock H.; Van Moorselaar, Dirk; Theeuwes, Jan
    ABSTRACT: Statistical learning is a person’s ability to automatically learn environmental regularities through passive exposure. Since the earliest studies of statistical learning in infants, it has been debated exactly how “passive” this learning can be (i.e., whether attention is needed for learning to occur). In Experiment 1 of the current study, participants performed a serial feature search task where they searched for a target shape among heterogenous nontarget shapes. Unbeknownst to the participants, one of these nontarget shapes was presented much more often in location. Even though the regularity concerned a nonsalient, nontarget item that did not receive any attentional priority during search, participants still learned its regularity (responding faster when it was presented at this high-probability location). While this may suggest that not much, if any, attention is needed for learning to occur, follow-up experiments showed that if an attentional strategy (i.e., color subset search or exogenous cueing) effectively prevents attention from being directed to this critical regularity, incidental learning is no longer observed. We conclude that some degree of attention to a regularity is needed for visual statistical learning to occur.
  • Transfer of statistical learning between tasks
    Publication . Van Moorselaar, Dirk; Theeuwes, Jan
    Recent studies have shown that observers can learn to suppress locations in the visual field with a high distractor probability. Here, we investigated whether this learned suppression resulting from a spatial distractor imbalance transfers to a completely different search task that does not contain any distractors. Observers performed the additional singleton task and learned to suppress the location that was likely to contain a color singleton distractor. Within a block, the additional singleton task would randomly switch to a T-among-L task where observers searched in parallel (Experiment 1) or serially (Experiment 2) for a T among Ls. The upcoming search was either unpredictable (Experiment 1/2A) or cued (Experiment 1/2B). The results show that there was transfer of learning from one to the other task as the learned suppression stayed in place after the switch regardless of whether the T-among-L task was performed via parallel or serial search. Moreover, cueing that the task would switch had no effect on performance. The current findings indicate that implicit learned biases are rather inflexible and remain in place even when the task and the required search strategy are dramatically different and even when participants can anticipate that a change in the search required is imminent. This transfer of the suppression to a different task is consistent with the notion that suppression is proactively applied. Because the location is already suppressed proactively, that is, before display onset, regardless which display and task is presented, the suppressed location competes less for attention than all other locations.
  • Statistical learning of motor preparation
    Publication . Theeuwes, Jan; Huang, Changrun; Frings, Christian; Van Moorselaar, Dirk
    Statistical learning, the process of extracting regularities from the environment, is one of the most fundamental abilities playing an essential role in almost all aspects of human cognition. Previous studies have shown that attentional selection is biased toward locations that are likely to contain a target and away from locations that are likely to contain a distractor. The current study investigated whether participants can also learn to extract that a specific motor response is more likely when the target is presented at specific locations within the visual field. To that end, the additional singleton paradigm was adapted such that when the singleton target was presented at one specific location, one response (e.g., right index finger) was more likely than the other (e.g., right middle finger) and the reverse was true for another location. The results show that participants learned to extract that a particular motor response is more likely when the singleton target (which was unrelated to the response) was presented at a specific location within the visual field. The results also suggest that it is the location of the target and not its shape that is associated with the biased response. This learning cannot be considered as being top-down or conscious as participants showed little, if any, awareness of the response biases present. The results are discussed in terms of the event coding theory. The study increases the scope of statistical learning and shows how individuals adapt automatically, without much awareness, to the regularities present in the environment.