Browsing by Author "Smeets, Monique A. M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Human chemosignals of disgust facilitate food judgmentPublication . Zheng, Yan; You, Yuqi; Farias, Ana Rita; Simon, Jessica; Semin, Gün R.; Smeets, Monique A. M.; Li, WenChoosing food is not a trivial decision that people need to make daily, which is often subject to social influences. Here, we studied a human homolog of social transmission of food preference (STFP) as observed in rodents and other animals via chemosignals of body secretions. Human social chemosignals (sweat) produced during a disgust or neutral state among a group of donors were presented to participants undergoing a 2-alternative-forced-choice food healthiness judgment task during functional magnetic resonance imaging (fMRI). Response speed and two key signal detection indices-d' (discrimination sensitivity) and β (response bias)-converged to indicate that social chemosignals of disgust facilitated food healthiness decisions, in contrast to primary disgust elicitors (disgust odors) that impaired the judgment. fMRI analyses (disgust vs. neutral sweat) revealed that the fusiform face area (FFA), amygdala, and orbitofrontal cortex (OFC) were engaged in processing social chemosignals of disgust during food judgment. Importantly, a double contrast of social signaling across modalities (olfactory vs. visual-facial expressions) indicated that the FFA and OFC exhibited preferential response to social chemosignals of disgust. Together, our findings provide initial evidence for human STFP, where social chemosignals are incorporated into food decisions by engaging social and emotional areas of the brain.
- Rapid stress system drives chemical transfer of fear from sender to receiverPublication . Groot, Jasper H. B. de; Smeets, Monique A. M.; Semin, Gün R.Humans can register another person’s fear not only with their eyes and ears, but also with their nose. Previous research has demonstrated that exposure to body odors from fearful individuals elicited implicit fear in others. The odor of fearful individuals appears to have a distinctive signature that can be produced relatively rapidly, driven by a physiological mechanism that has remained unexplored in earlier research. The apocrine sweat glands in the armpit that are responsible for chemosignal production contain receptors for adrenalin. We therefore expected that the release of adrenalin through activation of the rapid stress response system (i.e., the sympathetic-adrenal medullary system) is what drives the release of fear sweat, as opposed to activation of the slower stress response system (i.e., hypothalamus- pituitary-adrenal axis). To test this assumption, sweat was sampled while eight participants prepared for a speech. Participants had higher heart rates and produced more armpit sweat in the fast stress condition, compared to baseline and the slow stress condition. Importantly, exposure to sweat from participants in the fast stress condition induced in receivers (N = 31) a simulacrum of the state of the sender, evidenced by the emergence of a fearful facial expression (facial electromyography) and vigilant behavior (i.e., faster classification of emotional facial expressions).