Browsing by Author "Bonadonna, Francesco"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Comment on “Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds” by Savoca et al.Publication . Dell’Ariccia, Gaia; Phillips, Richard A.; Franeker, Jan A. van; Gaidet, Nicolas; Catry, Paulo; Granadeiro, José Pedro; Ryan, Peter G.; Bonadonna, FrancescoIn their recent paper, Savoca and collaborators (2016) showed that plastic debris in the ocean may acquire a dimethyl sulfide (DMS) signature from biofouling developing on their surface. According to them, DMS emission may represent an olfactory trap for foraging seabirds, which explains patterns of plastic ingestion among procellariiform seabirds. This hypothesis is appealing, but some of the data that Savoca et al. used to support their claim are questionable, resulting in a misclassification of species, as well as other decisions regarding the variables to include in their models. Furthermore, with their focus on a single lifestyle trait (nesting habit) of dubious relevance for explaining plastic ingestion, Savoca et al. neglect the opportunity to explore other factors that might provide better ecological insight. Finally, we are deeply concerned by the conservation policy recommendation proposed by Savoca et al.—to increase antifouling properties of consumer plastics—which constitutes a substantial environmental risk and delivers the wrong message to decision-makers. The reduction of plastic consumption, waste prevention, and proactive reuse through a circular economy should be at the heart of policy recommendations for future mitigation efforts.
- Comment on “Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds” by Savocaet alPublication . Dell'Ariccia, Gaia; Phillips, Richard; Franeker, Jan A. Van; Gaidet, Nicolas; Catry, Paulo; Granadeiro, José Pedro; Ryan, Peter G.; Bonadonna, FrancescoIn their recent paper, Savoca and collaborators (2016) showed that plastic debris in the ocean may acquire a dimethyl sulfide (DMS) signature from biofouling developing on their surface. According to them, DMS emission may represent an olfactory trap for foraging seabirds, which explains patterns of plastic ingestion among procellariiform seabirds. This hypothesis is appealing, but some of the data that Savoca et al. used to support their claim are questionable, resulting in a misclassification of species, as well as other decisions regarding the variables to include in their models. Furthermore, with their focus on a single lifestyle trait (nesting habit) of dubious relevance for explaining plastic ingestion, Savoca et al. neglect the opportunity to explore other factors that might provide better ecological insight. Finally, we are deeply concerned by the conservation policy recommendation proposed by Savoca et al.-to increase antifouling properties of consumer plastics-which constitutes a substantial environmental risk and delivers the wrong message to decision-makers. The reduction of plastic consumption, waste prevention, and proactive reuse through a circular economy should be at the heart of policy recommendations for future mitigation efforts.
- Flexible migratory choices of Cory’s shearwaters are not driven by shifts in prevailing air currentsPublication . Dell’Ariccia, Gaia; Benhamou, Simon; Dias, Maria P.; Granadeiro, José Pedro; Sudre, Joel; Catry, Paulo; Bonadonna, FrancescoWind conditions strongly affect migratory costs and shape flyways and detours for many birds, especially soaring birds. However, whether winds also influence individual variability in migratory choices is an unexplored question. Cory's shearwaters (Calonectris borealis) exhibit migratory flexibility, changing non-breeding destination across the Atlantic Ocean within and between years. Here, we investigated how wind dynamics affect the spatiotemporal migratory behaviour and whether they influence individual choices of non-breeding destination. We analysed 168 GLS tracks of migratory Cory's shearwaters over five years in relation to concurrent wind data. We found no evidence for an association of the use of specific paths or destinations with particular wind conditions. Our results suggest that shearwaters deliberately choose their non-breeding destination, even when the choice entails longer distances and higher energetic costs for displacement due to unfavourable wind conditions en route. Favourable winds trigger migration only when directed towards specific areas but not to others. Despite their dependence on wind for dynamic soaring, Cory's shearwaters show a high individuality in migratory behaviour that cannot be explained by individual birds encountering different meteorological conditions at departure or during migratory movements.